
Page 1

Interactive Use / History
Tab completion press Tab (1-3 times). Many things complete. Common: paths
ctrl-r key combo Search backwards in history
up arrow last command from history
history show your command history

Finding Documentation
man command (e.g. man cp) Manual pages for commands. Search for words with /
info command info pages. Often more verbose than man pages
command --help (e.g cp –help) help flag for most gnu commands

help list bash internal commands
help <command> help for bash internal commands
https://mywiki.wooledge.org/ Bash Internet Resource (Bash FAQ, Bash Guide)

File system paths
. and .. current directory and parent directory
/ root directory
~ or $HOME expanded by the shell to the path of your home dir
cd ~/parent/child Change current directory to "child"
cd .. Change directory from “child” to parent directory "parent"

Listing directory contents, Disk Space
ls „list“ - List the files in a directory.

-a: show hidden files -l: long format
du
du -hs dir1 -h = "human readable" -s = "summary"
df -h „disk free“ - show total free space for mounted volumes

File transfer
scp

sftp

Shared file access - change permissions for different groups and users
chgrp mygroup file Makes file belong to the group mygroup
chmod u=rw,g=rw,o=r file.txt

chmod -R a+r dir Change permission recursively on „dir“, „all“ get read permission

Moving, renaming, and copying files
Copy a file

mv file1 newname Move or rename a file. cp and mv are used in the same way
mv file1 ~/AAA/ Move file1 into sub-directory AAA in your home directory
rm file1 [file2...]
mkdir dir1 [dir2...] Create directories. With -p: create all needed directories
rmdir dir1 [dir2...] Remove an empty directory

ls -la
„disk usage“, how much space is in use (including subfolders)

Secure copy ($ scp <sourcefile>
<username>@<host>:<targetfile>) with -r: recursively
Secure file transfer program ($ sftp
<username>@<host>:<targetdir>)

user (u): read + write
group (g): read + write
other (o): read only

cp file1 newfile

Remove or delete a file. with -r: recursively (Careful!)

Page 2

Viewing and editing files
less filename

nano filename Edit a file using the “nano” editor
vi filename Edit file using “vi” or “vim” (see section below)

head -n 8 filename Show the first 8 lines of a file
tail filename Show the last few lines of a file
tail -f filename -f: "follow" - keep showing lines as the file grows forever

Environment variables

cd $DIRROOT

echo $DIRROOT Prints out the value of DIRROOT, or /usr/local/dir
env and printenv Print all available environment variables

Standard environment variables:
$PATH All directories with executables
$USER User name
$HOME User's home folder (/home/user_name)
$TMPDIR Special variable for temporary folder (/scratch/user_name)

Searching
grep “string” file_name Prints all the lines in a file that contain the string
grep -il “string” file_name
find /mnt -name xyz.txt Finds file “xyz.txt” recursively from directory “/mnt”
find . -type f Finds all files that are regular files under current directory (.)

Redirection / Pipes
stdout → file; stderr still on terminal. File gets overwritten(!)

cmd 2> out.txt stderr → file; you still see non-error output on the terminal
cmd &> out.txt stdout AND stderr → file
cmd 1>&2 stdout → stderr; often used as cmd > file 2>&1
cmd 2>/dev/null stderr → NULL (ignore errors)

Appends the output of the grep command to the end of 'existfile'

ls -l | less Output of "ls -l" is sent with “|” (“piped”) to the command "less".
du -sc * | sort -n | tail

Progressively dump a file to the screen:
/word = search for word; SPACE = page down
Page-Up or U: up ; q=quit

DIRROOT=/usr/local/dir
export DIRROOT=/usr/local/dir

Defines the variable DIRROOT with the value /usr/local/dir
Exports the variable to a child process
Changes your present working directory to the value of
DIRROOT

Print filename(l) if file contains “string”, ignore-case(i)

find /path/to/somedir -type f
-name 'some*name*' -exec grep
-il 'regexp-pattern' '{}' +

Finds a file from point “somedir”, the name of file consists of
“some*name”, and file has line with “regexp-pattern”

cmd > out.txt; grep string filename >
out.txt

grep string filename >>
existfile

"du -sc *" lists sizes for all files and directories, "sort -n" orders
the output from smallest to largest size, "tail" displays last few
lines

Page 3

Archives
tar cvf archive.tar file1 … Create (c) a tar archive as a file “archive.tar” containing file1…
tar tvf archive.tar List (t) the contents of “archive.tar“
tar xvf archive.tar Extract (x) from the archive file
tar cvfz archive.tar.gz dir Create gzip compressed(z) tar

Process management
top and htop Interactive list of processes (htop Extended version of “top”)
ps aux List of the current processes
ps aux | grep $USER use grep to see only your own processes
ps aux | grep firefox See all processes of “firefox”

Find out process id (PID)

kill »pid_of_process« Kill process (per PID)

Loops
repeat something with a, b and c in $key

do something with all files in the directory starting with out

Shell globbing with Wildcards –- the shell parses wildcards and variables, not the command!

? (question mark) Any single character
* (asterisk)
[] (square brackets) Specifies a character range e.g. [A-Z] is any capital letter
\ (backslash) Protect a subsequent special character

Regular Expressions
grep, sed, awk, vim,... programs that use regular expressions
. Any character
[] (square brackets) character range e.g. [ab] is a or b, [A-Z] any capital letter
* Any number (incl. 0) of the preceding character
^ $ ^ at the start: Begin of the line $ at the end: end of the line
grep ^[ab]*$ find lines that ar empty or only contain the letters a or b

vi / vim
i „insert“ - enter edit mode
ESC Key exit edit mode / enter command mode
:wq :w (write) and :q (quit) – save and quit
:q! force quit without saving
/ search for a word / regular expression
dd delete a line
p (or P) insert the last deleted thing below (or above)
long cheat sheet: https://vim.rtorr.com/

awk

awk '$4>100{print}'
awk -F# separate columns on #, not spaces. Uses Regex

pidof »process_name« or
ps aux | grep »process_name«

for key in a b c; do echo
$key;done
for file in out* ; do ls -la
$file; done

Any number of characters (e.g. find file*.txt)

awk '/bla/{print $3;sum+=$4}
END{print sum}'

/bla/: execute code in { } on lines with „bla“
print $3: print the 3rd column of the file
END{} execute code in braces at the end of file
print lines with value in 4th column bigger than 100

Page 4

K.Siegmund

