BwUniCluster2.0/Software/R/Glmnet: Difference between revisions
< BwUniCluster2.0 | Software | R
Jump to navigation
Jump to search
mNo edit summary |
|||
Line 14: | Line 14: | ||
# Write the following environment variables to Makevars |
# Write the following environment variables to Makevars |
||
# Skip the 2nd and 3rd commands below if Makevars already consist these variables (1st command shows content of Makevars) |
|||
cat ~/.R/Makevars |
|||
echo "CXX14=icpc" >> ~/.R/Makevars |
echo "CXX14=icpc" >> ~/.R/Makevars |
||
echo "CXX14FLAGS=-O3 -fPIC -std=c++14 -axCORE-AVX512,CORE-AVX2,AVX -xSSE4.2 -fp-model strict -qopenmp" >> ~/.R/Makevars |
echo "CXX14FLAGS=-O3 -fPIC -std=c++14 -axCORE-AVX512,CORE-AVX2,AVX -xSSE4.2 -fp-model strict -qopenmp" >> ~/.R/Makevars |
Revision as of 12:19, 23 June 2022
General information
glmnet is a R library for lasso and elastic-net regularized generalized linear models
Installation instructions
Consider starting an interactive job for compiling. Copy and paste the following to your shell.
# Load the R software module, e.g. module load math/R/4.1.2 # Prepare .R directory (if it does not already exists) mkdir -p ~/.R # Write the following environment variables to Makevars # Skip the 2nd and 3rd commands below if Makevars already consist these variables (1st command shows content of Makevars) cat ~/.R/Makevars echo "CXX14=icpc" >> ~/.R/Makevars echo "CXX14FLAGS=-O3 -fPIC -std=c++14 -axCORE-AVX512,CORE-AVX2,AVX -xSSE4.2 -fp-model strict -qopenmp" >> ~/.R/Makevars # Install the glmnet package from within R session R -q > install.packages("glmnet", dependencies=TRUE) # Run a quick test > library(glmnet) > data(QuickStartExample) > x <- QuickStartExample$x > y <- QuickStartExample$y > fit <- glmnet(x, y) > print(fit)