JUSTUS2/Software/Turbomole

From bwHPC Wiki
Jump to: navigation, search
Name
module load chem/turbomole
Availability bwUniCluster
License commerical
Citing See Turbomole manual
Links Homepage; Documentation
Graphical Interface No (Yes, for generating input)
User Forum external

1 Description

Turbomole is a general purpose quantum chemistry software package for ab initio electronic structure calculations and provides:

  • ground state calculations for methods such as Hartree-Fock, DFT, MP2, and CCSD(T);
  • excited state calculations at different levels such as full RPA, TDDFT, CIS(D), CC2, an ADC(2);
  • geometry optimizations, transition state searches, molecular dynamics calculations;
  • property and spectra calculations such as IR, UV/VIS, Raman, and CD;
  • approximations like resolution-of-the-identity (RI) to speed-up the calculations without introducing uncontrollable or unknown errors; as well as
  • parallel versions (OpenMP, Fork, MPI and Global Arrays) for almost all kind of jobs.

For more information on Turbmole's features please visit http://www.turbomole-gmbh.com/program-overview.html.

2 Versions and Availability

A current list of the versions available on the bwUniCluster and bwForClusters can be obtained from the Cluster Information System: CIS Information on Turbomole

On the command line interface (CLI) of a particular bwHPC cluster a list of all available Turbomole versions can be inquired as followed

$ module avail chem/turbomole


2.1 Parallel computing

The Turbomole Module subsumes all available parallel computing variants of Turbomole's binaries. Turbomole defines the following parallel computing variants:

  • SMP = Shared-memory parallel computing based on OpenMP and Fork() with the latter using separated address spaces.
  • MPI = Message passing interface protocol based parallel computing
  • GA = Global arrays, API for "shared-memory" programming for distributed-memory computers which can be used e.g. to complement MPI.

However only one of the 3 parallel variants or the sequential variant can be loaded at once and most Turbomole's binaries support only 1 or 2 of the parallelization variants. Like for Turbomole installations without a Module system, the variants have to be triggered by the environment variable $PARA_ARCH.

3 Usage

3.1 Before loading the Module

Before loading the Turbomole Module the parallel computing variant has to be defined via the environment variable $PARA_ARCH using the abbreviations SMP, MPI or GA, e.g.:

$ export PARA_ARCH=MPI

will later load the MPI binary variants. If the variable $PARA_ARCH is not defined or empty, the sequential binary variants will be active once the Turbomole Module is loaded.

3.2 Loading the Module

You can load the default version of Turbomole with the command:

$ module load chem/turbomole

The Turbomole Module does not depend on any other Module, but on the variable $PARA_ARCH. Moreover, Turbomole provides its own libraries regarding OpenMP, Fork(), MPI, and Global Array based parallelization. If you wish to load a specific (older) version you can do so using e.g.:

$ module load chem/turbomole/6.5

to load the version 6.5

3.3 Switching between different parallel variants

To switch between the different parallel variants provided by the Turbomole Module, simply define the new parallel variant via $PARA_ARCH and load the Module again. Note that for switching between the parallel variants unloading of the Turbomole Module is not required. For instance to change to the MPI variant, execute:

$ export PARA_ARCH=MPI
$ module load chem/turbomole


3.4 Program Binaries

The Turbomole software package consists of a set of stand-alone program binaries providing different features and parallelization support:

Binary Features OpenMP Fork MPI GA
define Interactive input generator no no no no
dscf Energy calculations yes yes yes no
grad Gradient calculations no yes yes no
ridft Energy calc. with fast Coulomb approximation no yes yes yes
rdgrad Gradient calc. with fast Coulomb approximation no yes yes yes
ricc2 Electronic excitation energies, transition moments and properties of excited states yes no yes no
aoforce Analytic calculation of force constants, vibrational frequencies and IR intensities no yes no no
escf Calc. of time dependent and dielectric properties no yes no no
egrad gradients and first-order properties of excited states no yes no no
odft Orbital-dependent energy calc. yes no no no

For the complete set of binaries and more detailed description of their features read here.


3.5 Disk Usage

By default, scratch files of Turbomole binaries are placed in the directory of Turbmole binary execution. Please do not run your Turbomole calculations in your $HOME or $WORK directory.

4 Examples

4.1 bwUniCluster specific

You can copy a simple MOAB example to your home directory and run it, by doing the following steps:

$ module load chem/turbomole
$ mkdir -vp ~/Turbomole-example/
$ cd ~/Turbomole-examples/
$ cp -r $TURBOMOLE_EXA_DIR/* ~/Turbmole-example/
$ msub bwUniCluster_turbomole_single-node_example.sh

The last step submits the job example script bwUniCluster_turbomole_single-node_example.sh to the queueing system. Once started on a compute node, all calculations will be done under an unique directory on the local file system of that particular compute node.

5 Version-Specific Information

For specific information about version X, see the information available via the module system with the command

$ module help chem/turbomole/X